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ON DEFORMATIONS OF Q-FANO THREEFOLDS

TARO SANO

Dedicated to Professor Yujiro Kawamata on the occasion of his 60th birthday.

Abstract. We study the deformation theory of a Q-Fano 3-fold with only terminal singu-
larities. First, we show that the Kuranishi space of a Q-Fano 3-fold is smooth. Second, we
show that every Q-Fano 3-fold with only “ordinary” terminal singularities is Q-smoothable,
that is, it can be deformed to a Q-Fano 3-fold with only quotient singularities. Finally, we
prove Q-smoothability of a Q-Fano 3-fold assuming the existence of a Du Val anticanonical
element. As an application, we get the genus bound for primary Q-Fano 3-folds with Du
Val anticanonical elements.
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1. Introduction

All algebraic varieties in this paper are defined over C.
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1.1. Background and our results.

Definition 1.1. Let X be a normal projective variety. We say that X is a Q-Fano 3-fold
if dimX = 3, X has only terminal singularities and −KX is an ample Q-Cartier divisor.

Q-Fano 3-folds are important objects in the classification of algebraic varieties. Toward
the classification of Q-Fano 3-folds, it is fundamental to study their deformations.

Definition 1.2. Let X be an algebraic variety and ∆1 an open unit disc of dimension 1.
A Q-smoothing of X is a flat morphism of complex analytic spaces f : X → ∆1 such that
f−1(0) ≃ X and f−1(t) has only quotient singularities of codimension at least 3.

If X is proper, we assume that f is a proper morphism.

Remark 1.3. Schlessinger [28] proved that an isolated quotient singularity of dimension ≥ 3
is infinitesimally rigid under small deformations.

Reid ([26], [27]) and Mori [16] showed that a 3-fold terminal singularity can be written as
a quotient of an isolated cDV hypersurface singularity by a finite cyclic group action and it
admits a Q-smoothing.

In general, a local deformation may not lift to a global deformation. However, Altınok–
Brown–Reid conjectured the following in [2, 4.8.3].

Conjecture 1.4. Let X be a Q-Fano 3-fold. Then X has a Q-smoothing.

The following theorem is an answer to their question in the “ordinary” case.

Theorem 1.5. (= Corollary 3.6) Let X be a Q-Fano 3-fold with only ordinary terminal
singularities (See Remark 1.6). Then X has a Q-smoothing.

We prove a more general statement in Theorem 3.5 that implies Theorem 1.5.

Remark 1.6. A 3-dimensional terminal singularity is called ordinary if the defining equation
of its index 1 cover is Zr-invariant, where Zr is the Galois group of the cover. In the list
of 3-dimensional terminal singularities, there are 5 families of ordinary singularities and 1
exceptional family of Gorenstein index 4 (See [16, Theorem 12 (2)] or [27, (6.1) Figure (2)]
).

Previously, Namikawa [19] proved that a Fano 3-fold with only terminal Gorenstein singu-
larities admits a smoothing, that is, it can be deformed to a smooth Fano 3-fold. Minagawa
[14] proved Q-smoothability of a Q-Fano 3-fold of Fano index one, that is, it has a global
index one cover. Takagi also treated some cases in [33, Theorem 2.1]. Note that the singu-
larities on a Q-Fano 3-fold in their cases are ordinary.

In order to prove the Q-smoothablity, we need the following theorem on the unobstruct-
edness of deformations of a Q-Fano 3-fold.

Theorem 1.7. (= Theorem 2.11) Let X be a Q-Fano 3-fold. Then the deformations of X
are unobstructed.

Namikawa [19] proved the unobstructedness in the Gorenstein case and Minagawa [14]
proved it for a Q-Fano 3-fold of Fano index one. We show it for any Q-Fano 3-fold. This
theorem reduces the problem of finding good deformations to that of 1st order infinitesimal
deformations.

Another fundamental problem in the classification of Q-Fano 3-folds is to find anticanoni-
cal elements with only mild singularities. An anticanonical element is called an elephant. A
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Gorenstein Fano 3-fold with only canonical singularities has an elephant with only Du Val
singularities([31], [25]). By using this fact, Mukai classified “indecomposable” Gorenstein
Fano 3-folds with canonical singularities in [17]. Hence the existence of a Du Val elephant
is useful in the classification. However a Q-Fano 3-fold may not have such a good element
in general. There exist examples of Q-Fano 3-folds with empty anticanonical linear systems
or with only non Du Val elephants as in [2, 4.8.3]. Nevertheless, Altınok–Brown–Reid [2]
conjectured the following.

Conjecture 1.8. Let X be a Q-Fano 3-fold. Assume that |−KX | contains an element D.

(1) Then there exists a deformation f : X → ∆1 of X such that |−KXt | contains an
element Dt with only Du Val singularities for general t ∈ ∆1.

(2) Moreover, a divisor Dt ⊂ Xt is locally isomorphic to 1
r
(a, r−a) ⊂ 1

r
(1, a, r−a), where

both sides are corresponding cyclic quotient singularities for some coprime integers
r and a around each Du Val singularities of Dt.

We call a deformation as above a simultaneous Q-smoothing of a pair (X,D). If we first
assume the existence of a Du Val elephant, we get the following result, which is proved in
Section 4.5.

Theorem 1.9. Let X be a Q-Fano 3-fold. Assume that |−KX | contains an element D with
only Du Val singularities.

Then X has a simultaneous Q-smoothing. In particular, X has a Q-smoothing.

Note that we do not need the assumption of ordinary singularities as in Theorem 1.5. The
motivation of Conjecture 1.8 is to treat a Q-Fano 3-fold with only non Du Val elephants.
We investigate this case in elsewhere.

A Q-Fano 3-fold is called primary if its canonical divisor generates the class group mod
torsion elements. Takagi [32] studied primary Q-Fano 3-folds with only terminal quotient
singularities and established the genus bound for those with Du Val elephants. Hence
Theorems 1.5 and 1.9 are useful for the classification. Actually, as an application of Theorem
1.9, we can reprove his bound as follows.

Corollary 1.10. Let X be a primary Q-Fano 3-fold. Assume that X is non-Gorenstein
and |−KX | contains an element with only Du Val singularities.

Then h0(X,−KX) ≤ 10.

Takagi expected the existence of a Du Val elephant for X such that h0(X,−KX) is
appropriately big ([32, p.37]). If we assume the expectation, Corollary 1.10 implies the
genus bound as above for every primary Q-Fano 3-fold.

1.2. Outline of the proofs. We sketch the proof of the above theorems on a Q-Fano 3-fold
X .

First, we explain how to prove the unobstructedness briefly. If X is Gorenstein, we have

Ext2OX
(Ω1

X ,OX) ≃ Ext2OX
(Ω1

X ⊗ ωX , ωX) ≃ H1(X,Ω1
X ⊗ ωX)

∗

since ωX is invertible and the unobstructedness is reduced to the Kodaira-Nakano type
vanishing of the cohomology. However, if X is non-Gorenstein, that is, ωX is not invertible,
we can not reduce the vanishing of the Ext group to the vanishing of cohomology groups a
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priori and we do not have a direct method to prove the vanishing of the Ext group. Moreover,
since we do not have a branched cover of a Q-Fano 3-fold which is Fano or Calabi-Yau in
the general case, we can not reduce the unobstructedness to that of such cover. We solve
this difficulty by considering the obstruction classes rather than the ambient obstruction
space Ext2 and considering the smooth part. The important point is that deformations of
X are bijective to deformations of the smooth part as in [11, 12.1.8] or [10, Theorem 12].
The description of the obstruction by a 2-term extension as in Proposition 2.6 is a crucial
tool.

In order to find a good deformation of first order, we follow the line of the proof in the case
of Fano index 1 by Minagawa [14] which used [21, Theorem 1] of Namikawa-Steenbrink on the
non-vanishing of the homomorphism between cohomology groups. We need a generalisation
of this theorem to the non-Gorenstein setting which is Proposition 3.4. We can generalise
this lemma provided that the singularity is ordinary. The generalisation of this lemma for
general terminal singularities implies Conjecture 1.4.

Now, in order to find a good deformation of first order under the assumption of a Du
Val elephant, we use the deformation theory of the pair of X and D where D ∈ |−KX |.
The smoothness of the Kuranishi space of X implies that the smoothness of the Kuranishi
space of the pair (X,D) for D ∈ |−KX | (Theorem 4.4). The important point in the proof
is that an elephant contains the non-Gorenstein points of X . By this, in order to see that a
deformation of X is a Q-smoothing, it is enough to see that the singularities of D deforms
non trivially. Here we adapt the diagram of [21, Theorem 1.3] to the case (X,D). Instead
of the Namikawa-Steenbrink’s proposition [21, Theorem 1.1] on non-vanishing of a certain
cohomology map, we use the coboundary map of the local cohomology sequence for the
pair. To use such a map, we arrange a resolution of singularities of the pair which has
non-positive discrepancies as in Proposition 4.5. Moreover we refine the Lefschetz theorem
for class groups by Ravindra-Srinivas [23] for our cases (Proposition 4.10) and this Lefschetz
statement plays an important role for lifting.

2. Unobstructedness of deformations of a Q-Fano 3-fold

2.1. Preliminaries on infinitesimal deformations. First, we introduce a deformation
functor of an algebraic scheme.

Definition 2.1. (cf. [29, 1.2.1]) Let X be an algebraic scheme over k and S an algebraic
scheme over k with a closed point s ∈ S. A deformation of X over S is a pair (X , i), where
X is a scheme flat over S and i : X →֒ X is a closed immersion such that the induced
morphism X → X ×S {s} is an isomorphism.

Two deformations (X1, i1) and (X2, i2) over S are said to be equivalent if there exists an
isomorphism ϕ : X1 → X2 over S which commutes the following diagram;

X � � i1
//� p

i2

  
❆❆

❆❆
❆❆

❆❆
X1

ϕ

��

X2

Let A be the category of Artin local k-algebras with residue field k. We define the functor
DefX : A → (Sets) by setting

(1) DefX(A) := {(X , i) : deformation of X over SpecA}/(equiv),
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where (equiv) means the equivalence introduced in the above.

We also introduce the deformation functor of a closed immersion.

Definition 2.2. (cf. [29, 3.4.1]) Let f : D →֒ X be a closed immersion of algebraic schemes
over an algebraically closed field k and S an algebraic scheme over k with a closed point
s ∈ S. A deformation of a pair (X,D) over S is a data (F, iX , iD) in the cartesian diagram

(2) D � � iD
//

f
��

D

F
��

X � � iX
//

��

X

Ψ
��

{s} �
�

// S,

where Ψ and Ψ ◦ F are flat and iD, iX are closed immersions. Two deformations (F, iD, iX)
and (F ′, i′D, i

′
X) of (X,D) over S are said to be equivalent if there exist isomorphisms α : X →

X ′ and β : D → D′ over S which commutes the following diagram;

D � � iD //� p

i′D

  
❆❆

❆❆
❆❆

❆❆
D //

β
��

X

α
��

X_?iX

oo
nN

i′X}}④④
④④
④④
④④

D′ // X ′.

We define the functor Def(X,D) : A → (Sets) by setting

(3) Def(X,D)(A) := {(F, iD, iX) : deformation of (X,D) over SpecA}/(equiv),

where (equiv) means the equivalence introduced in the above.

We study unobstructedness of the above functors in this section. Unobstructedness is
defined as follows.

Definition 2.3. We say that deformations of X are unobstructed if, for all A,A′ ∈ A with
an exact sequence

0 → J → A′ → A→ 0

such that mA′ · J = 0, the natural restriction map of deformations

DefX(A
′) → DefX(A)

is surjective, that is, DefX is a smooth functor.

Proposition 2.4. Let X be an algebraic scheme with a versal formal couple (R, û) in the
sense of [29, Definition 2.2.6]. Set Am := k[t]/(tm+1) for all integers m ≥ 0. Assume that

DefX(An+1) → DefX(An)

are surjective for all non-negative integers n ≥ 0.
Then deformations of X are unobstructed.

Proof. For A ∈ A, let hR(A) be the set of local k-algebra homomorphisms from R to A.
This rule defines a functor

hR : A → (Sets).
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Since (R, û) is versal, we have a smooth morphism of functors

φû : hR → DefX

defined by û.
Then we can see that

hR(An+1) → hR(An)

are surjective for all n by the assumption and the versality.
By [4, Lemma 5.6] and the assumption, we can see that hR is a smooth functor. This

implies that DefX is smooth. �

We use the following lemma about an isomorphism of some Ext groups.

Lemma 2.5. Let X be an algebraic scheme over an algebraically closed field k. Let X ∈
DefX(A) be a deformation of X over A ∈ A. Let F be a coherent OX -module which is
flat over A. Let G be a coherent OX-module which is also an OX -module by the canonical
surjection OX ։ OX . Then we have the following;

(i) ExtiOX
(F ,G) ≃ ExtiOX

(F ⊗A k,G) for all i, where Exti is a sheaf of Ext groups.

(ii) ExtiOX
(F ,G) ≃ ExtiOX

(F ⊗A k,G) for all i.

Proof. (i) Let E• → F → 0 be a resolution of F by a complex E• of locally free OX -modules.
By [8, Proposition 6.5], we see that

(4) Hi(HomOX
(E•,G)) ≃ ExtiOX

(F ,G),

where Hi is a cohomology sheaf and Hom is a sheaf of Hom groups. Since F is flat over A,
we see that E• ⊗A k → F ⊗A k → 0 is still a resolution of the sheaf F ⊗A k. Hence we have

(5) Hi(HomOX
(E• ⊗A k,G)) ≃ ExtiOX

(F ⊗A k,G).

Note that HomOX
(E•,G) ≃ HomOX

(E• ⊗A k,G) since G is an OX -module. By this and
isomorphisms (4) and (5), we obtain the required isomorphism in (i).

(ii) This follows from (i) and the local-to-global spectral sequence of Ext groups;

H i(X ,ExtjOX
(F ,G)) ⇒ Exti+jOX

(F ,G)

�

2.2. Description of obstruction classes. We need the following description of the ob-
struction space for deformations.

Proposition 2.6. Let k be an algebraically closed field of characteristic 0. Let X be a
reduced scheme of finite type over k. Let U ⊂ X be an open subset with only l.c.i. singular-
ities and ι : U → X an inclusion map. Assume that depthOX,p ≥ 3 for all scheme theoretic
points p ∈ X \ U . (We obtain codimX X \ U ≥ 3 by this condition.) Let Ω1

U be the Kähler
differential sheaf on U . Set An := k[t]/(tn+1) and let

ξn := (fn : Xn → SpecAn)

be a deformation of X.
Then the obstruction to lift Xn over An+1 lies in Ext2OU

(Ω1
U ,OU).
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Proof. We need to define an element

oξn ∈ Ext2OU
(Ω1

U ,OU)

which has a property that oξn = 0 if and only if there is a deformation ξn+1 = (fn+1 : Xn+1 →
SpecAn+1) which sits in the following cartesian diagram;

(6) Xn+1

��

Xn
oo

��

SpecAn+1 SpecAn.oo

Since the characteristic of k is zero, we have

Ω1
An/k ≃ An−1

as An-modules and an exact sequence

(7) 0 → (tn+1)
d
→ Ω1

An+1/k ⊗An+1 An → Ω1
An/k → 0.

Let fUn : Un → SpecAn be the flat deformation of U induced by fn. By pulling back the
above sequence by the flat morphism fUn, we get the following exact sequence;

(8) 0 → OU → f ∗
Un
(Ω1

SpecAn+1/k|SpecAn) → f ∗
Un
Ω1

SpecAn/k → 0.

Then, there is the relative cotagent sequence of a relative l.c.i. morphism fUn (cf. [29,
Theorem D.2.8]);

(9) 0 → f ∗
Un
Ω1

SpecAn/k → Ω1
Un/k → Ω1

Un/SpecAn
→ 0.

By combining the sequences (8), (9), we get the following exact sequence;

(10) 0 → OU → f ∗
Un
(Ω1

SpecAn+1/k
|SpecAn) → Ω1

Un/k → Ω1
Un/SpecAn

→ 0.

Let
oξn ∈ Ext2OU

(Ω1
U ,OU) ≃ Ext2OUn

(Ω1
Un/SpecAn

,OU)

be the element corresponding to the exact sequence (10). Note that Ω1
Un/SpecAn

is a flat An-

module since U is generically smooth and has only l.c.i. singularities ([29, Theorem D.2.7]).
Hence we obtain the above isomorphism of Ext2 by applying Lemma 2.5.

We check that this oξn is the obstruction to the existence of lifting of ξn over An+1.
Suppose that we have a lifting ξn+1 = (fn+1 : Xn+1 → SpecAn+1) with the diagram (6).

Then we can see that oξn = 0 as in [29, Proposition 2.4.8].
Conversely, suppose that oξn = 0. Consider the following exact sequence

Ext1OUn
(Ω1

Un/k,OU)
ǫ
→ Ext1OUn

(f ∗
Un
Ω1

SpecAn/k,OU)
δ
→ Ext2OUn

(Ω1
Un/SpecAn

,OU)

which is induced by the exact sequence (9). Consider

γ ∈ Ext1OUn
(f ∗

Un
Ω1

SpecAn/k,OU)

which corresponds to the exact sequence (8). It is easy to see that δ(γ) = oξn. Hence there
exists γ′ ∈ Ext1OUn

(Ω1
Un/k

,OU) such that ǫ(γ′) = γ. The class γ′ corresponds to the following
short exact sequence

0 → OU → E → Ω1
Un/k → 0
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for some OUn-module E on Un.
We can construct a sheaf of rings OUn+1 as the fiber product

OUn+1 := E ×Ω1
Un/k

OUn

as in [29, Theorem 1.1.10]. We can define a multiplication of (ξ, f), (ξ′, f ′) ∈ OUn+1 by

(ξ, f) · (ξ′, f ′) := (f ′ξ + fξ′, ff ′).

We also have a commutative diagram

(11) 0 // tn+1 · OU
//

=

��

OUn+1
//

��

OUn
//

d
��

0

0 // tn+1 · OU
// E // Ω1

Un/k
// 0,

where the upper horizontal sequence is an exact sequence of sheaves of rings. We can put
an An+1-algebra structure on OUn+1 as follows (cf. [20, p.10]);

We have a commutative diagram

0 // tn+1 · OU
//

=

��

f ∗
Un
(Ω1

An+1/k
⊗An+1 An) //

gE

��

f ∗
Un
(Ω1

An/k
) //

��

0

0 // tn+1 · OU
// E

fE
// Ω1

Un/k
// 0.

We have an element f ∗
Un
(dt) ∈ H0(Un, f ∗

Un
(Ω1

An+1/k
⊗An+1 An)) and can define

tUn+1 := (gE(f
∗
Un
(dt)), t) ∈ H0(Un+1,OUn+1).

Since we can calculate tn+2
Un+1

= 0, we can define a homomorphism ϕn+1 : An+1 → OUn+1 such

that ϕn+1(t) = tUn+1 and put an An+1-algebra structure on OUn+1 .
We can check that OUn+1 ⊗An+1 An ≃ OUn and OUn+1 ⊗An+1 (t

n+1) ≃ (tn+1)OX . Thus, by
the local criterion of flatness ([9, Proposition 2.2]), we see that OUn+1 is flat over An+1.

We have the following claim.

Claim 2.7. (i) R1ι∗OU = 0.
(ii) Let M be a finite An-module. Then

R1ι∗(f
∗
Un
M̃) = 0,

where M̃ is a coherent sheaf on SpecAn associated to M .

Proof of Claim. (i) Let p ∈ X \ U be a point and Up a small affine neighborhood of p.
Put Zp := Up ∩ (X \ U). It is enough to show that H1(Up \ Zp,OUp\Zp) = 0. We have
H2
Zp
(Up,OUp) = 0 since depthqOX,q ≥ 3 for all scheme-theoretic point q ∈ Zp by the

hypothesis. Since H i(Up,OUp) = 0 for i = 1, 2, we have H1(Up \Zp,OUp) ≃ H2
Zp
(Up,OUp) =

0.
(ii) We proceed by induction on dimkM .

If M ≃ k, then this is the first claim.
Now assume that there is an exact sequence

0 → k →M → M ′ → 0
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of An-modules and the claim holds for M ′. Then we have an exact sequence

R1ι∗(f
∗
Un
k̃) → R1ι∗(f

∗
Un
M̃) → R1ι∗(f

∗
Un
M̃ ′)

and the left and right hand sides are zero by the induction hypothesis. Hence R1ι∗(f
∗
Un
M̃) =

0. �

Note that ι∗OU ≃ OX , ι∗OUn ≃ OXn by Claim 2.7. Set OXn+1 := ι∗OUn+1 . By taking ι∗ of
(11), we have an exact sequence

(12) 0 → tn+1 · OX → OXn+1 → OXn → 0

since R1ι∗OU = 0. Thus we see that OXn+1 ⊗An+1 An ≃ OXn . We can see that OXn+1 is flat
over An+1 by [10, Theorem 12] since OUn+1 is flat over An+1.

Let Xn+1 := (X,OXn+1) be the scheme defined by the sheaf OXn+1 . Then the morphism
Xn+1 → SpecAn+1 is flat and

ξn+1 := (Xn+1 → SpecAn+1)

is a lifting of ξn. �

Remark 2.8. The author does not know whether the above construction of obstruction
classes works for general A,A′ as in Definition 2.3. Actually, the exact sequence (7) is not
exact for a small extension A′ of A in general. An example of such a small extension by
Manetti is given in [30].

However Proposition 2.4 reduces the study of unobstructedness to the case A = An, A
′ =

An+1.

2.3. Proof of Theorem 1.7. We need the following Lefschetz type theorem.

Theorem 2.9. [5, Chapter 3.1. Theorem] Let X ⊂ PN be a projective variety of dimension
n and L ⊂ PN a linear subspace of codimension d ≤ n. Assume that X \ (X ∩ L) has only
l.c.i. singularities. Then the relative homotopy group satisfies

πi(X,X ∩ L) = 0 (i ≤ n− d).

In particular, the restriction map H i(X,C) → H i(X ∩ L,C) is injective for i ≤ n− d.

We also need the following lemma on flatness of some sheaf.

Lemma 2.10. Let X be a 3-fold with only terminal singularities and U its regular part with
an open immersion ι : U →֒ X. Let ξn := (Xn → SpecAn) be a deformation of X over
An = C[t]/(tn+1) and Un → SpecAn the deformation of U induced by ξn.

Then the sheaf ι∗(Ω
1
Un/An

⊗ ωUn/An) is flat over An. Moreover, we have an isomorphism

(13)
(
ι∗(Ω

1
Un/An

⊗ ωUn/An)
)
⊗An C ≃ ι∗(Ω

1
U ⊗ ωU)

Proof. Since we can check this locally, we can assume X is a Stein neighborhood of a
singularity p ∈ X .

Let ω
[i]
Xn/An

:= ι∗ω
⊗i
Un/An

and r the Gorenstein index of X . We see that ω
[i]
Xn/An

is flat over

An by [10, Theorem 12] since OX(iKX) is S3 (cf. [12, Corollary 5.25]). The isomorphism

ω
[r]
Xn/An

≃ OXn determines a cyclic cover

πn : Yn := SpecOXn
⊕r−1
i=0ω

[i]
Xn/An

→ Xn
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and we see that Yn is flat over An. We also see that Ω1
Yn/An

is flat over An since Yn → SpecAn
is relative l.c.i. morphism and generically smooth (cf. [29, Theorem D.2.7]).

Let Y ′
n := π−1

n (Un). Next we see the isomorphism

(14) ι∗Ω
1
Y ′
n/An

≃ Ω1
Yn/An

.

We show this by induction on n. The isomorphism for n = 0 is known. (cf. [13], [6, Theorem
1.2]) Assume we have the isomorphism for i ≤ n− 1. We have a commutative diagram

0 // Ω1
Y

//

≃

��

Ω1
Yn/An

//

��

Ω1
Yn−1/An−1

//

≃

��

0

o // ι∗Ω
1
U

// ι∗Ω
1
Un/An

r′n,n−1
// ι∗Ω

1
Un−1/An−1

.

We see that r′n,n−1 is surjective by the above diagram. Thus we see that the vertical homo-
morphism in the middle is also an isomorphism. Thus we obtain the required isomorphism
(14).

By the isomorphism (14), we obtain an isomorphism

Ω1
Yn/An

≃ ι∗Ω
1
Y ′
n/An

≃ ⊕r−1
i=0 ι∗(Ω

1
Un/An

⊗ ω⊗i
Un/An

)

since πn|Y ′
n
: Y ′

n → Un is étale. Since Ω1
Yn/An

is flat over An and the direct summand of a

flat module is again flat, we see that the sheaf ι∗(Ω
1
Un/An

⊗ ωUn/An) is flat over An.

Now we check the isomorphism (13). We can also check this locally and may assume that
X is Stein. We use the same notations as above. Let π : Y := Yn ⊗An C → X be the index
one cover induced by πn and Y ′ := π−1(U) ⊂ Y . We have isomorphisms

Ω1
Yn/An

⊗An C ≃ Ω1
Y ≃ ι∗Ω

1
Y ′ ≃ ⊕r−1

i=0 ι∗(Ω
1
U ⊗ ω⊗i

U ),

Ω1
Yn/An

⊗An C ≃ ⊕r−1
i=0

(
ι∗(Ω

1
Un/An

⊗ ω⊗i
Un/An

)
)
⊗An C.

Comparing the Zr-eigenparts for i = 1, we obtain the required isomorphism.
Thus we finish the proof of Lemma 2.10. �

By using the obstruction class in Proposition 2.6, we can show the following theorem.

Theorem 2.11. Let X be a Q-Fano 3-fold. Then deformations of X are unobstructed.

Proof. Let U be the smooth part of X . Note that codimX X \ U ≥ 3 and X is Cohen-
Macaulay since X has only terminal singularities. Hence X and U satisfy the assumption
of Proposition 2.6. Set k := C.

Let ξn ∈ DefX(An) be a deformation of X

fn : Xn → SpecAn

and oξn ∈ Ext2(Ω1
U ,OU) the obstruction class defined in the proof of Proposition 2.6. We

show that oξn = 0 in the following.
Let ωX be the dualizing sheaf on X . By taking the tensor product of the sequence (10)

with the relative dualizing sheaf ωUn/SpecAn of fUn , we have an exact sequence

(15) 0 → ωU → f ∗
Un
(Ω1

SpecAn+1/k
|SpecAn)⊗ ωUn/ SpecAn

→ Ω1
Un/k ⊗ ωUn/SpecAn → Ω1

Un/SpecAn
⊗ ωUn/SpecAn → 0.
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By taking ι∗ of the above sequence, we get a sequence

(16) 0 → ωX → ι∗(f
∗
Un
Ω1

SpecAn+1/k|SpecAn ⊗ ωUn/SpecAn)

→ ι∗(Ω
1
Un/k ⊗ ωUn/SpecAn) → ι∗(Ω

1
Un/SpecAn

⊗ ωUn/SpecAn) → 0.

This sequence is exact by the following claim.

Claim 2.12. (i) R1ι∗ωU = 0.
(ii) R1ι∗(f

∗
Un
Ω1

SpecAn/k
⊗ ωUn/SpecAn) = 0.

Proof of Claim. (i) Let p ∈ X \ U be a singular point and Up a small affine neighborhood
at p. It is enough to show that H2

p (Up, ωUp) = 0. Let πp : Vp → Up be the index 1 cover of

Up. Then we have (πp)∗OVp ≃ ⊕r−1
i=0OUp(iKUp) where r is the index of the singularity p ∈ X .

Hence

H2
q (Vp,OVp) ≃

r−1⊕

i=0

H2
p (Up,OUp(iKUp)),

where q := π−1(p). L.H.S. is zero by the same argument as in Claim 2.7 since depthqOVp,q =
3. Hence we proved the first claim.
(ii) Let f(n,p) : U(n,p) → SpecAn be the deformation of Up induced from fn. It is enough to
show that

H2
p (U(n,p), f

∗
(n,p)Ω

1
SpecAn/k ⊗ ωU(n,p)/An) = 0.

Set ω
[i]
U(n,p)/An

:= ι∗ω
⊗i
U ′

(n,p)/An
, where U ′

(n,p) := U(n,p) \ {p}. We can take an index 1 cover

φ(n,p) : V(n,p) → U(n,p) which is determined by an isomorphism ω
[rp]

U(n,p)/An
≃ OU(n,p)

, where rp
is the Gorenstein index of Up. Set g(n,p) := f(n,p) ◦ φ(n,p). Note that

(φ(n,p))∗(g
∗
(n,p)Ω

1
SpecAn/k) ≃

r−1⊕

i=0

f ∗
(n,p)Ω

1
SpecAn/k ⊗ ω

[i]
U(n,p)/An

.

We can see that H2
p (U(n,p), f

∗
(n,p)Ω

1
SpecAn/k

⊗ ωU(n,p)/An) is a direct summand of

H2
q (V(n,p), g

∗
(n,p)Ω

1
SpecAn/k) ≃ H2

q (V(n−1,p),OV(n−1,p)
)

and this is zero by Claim 2.7(ii).
�

Since the sheaf ι∗(Ω
1
Un/An

⊗ωUn/An) is flat over An by Lemma 2.10, we have an isomorphism

Ext2OXn
(ι∗(Ω

1
Un/An

⊗ ωUn/An), ωX) ≃ Ext2OX
(ι∗(Ω

1
U ⊗ ωU), ωX)

by Lemma 2.5. By using this isomorphism, we define o′ξn ∈ Ext2OX
(ι∗(Ω

1
U⊗ωU), ωX) to be the

element corresponding to the sequence (16). Let r2 : Ext2OX
(ι∗(Ω

1
U⊗ωU), ωX) → Ext2OU

(Ω1
U⊗

ωU , ωU) be the natural restriction map and T : Ext2OU
(Ω1

U ⊗ ωU , ωU) → Ext2OU
(Ω1

U ,OU) be

the map induced by tensoring ω−1
U . Then we have

T (r2(o
′
ξn)) = oξn .

Hence it is enough to show that Ext2OX
(ι∗(Ω

1
U ⊗ωU), ωX) = 0. By the Serre duality, we have

Ext2OX
(ι∗(Ω

1
U ⊗ ωU), ωX)

∗ ≃ H1(X, ι∗(Ω
1
U ⊗ ωU)), where

∗ is the dual.
In the following, we show that

H1(X, ι∗(Ω
1
U ⊗ ωU)) = 0.
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Let m be a positive integer such that −mKX is very ample and |−mKX | contains a
smooth member Dm which is disjoint with the singular points of X . Let πm : Ym :=
Spec⊕m−1

i=0 OX(iKX) → X be a cyclic cover determined by Dm. Note that Ym has only
terminal Gorenstein singularities.

There is the residue exact sequence

0 → Ω1
U → Ω1

U (logDm) → ODm → 0

By tensoring this sequence with ωU and taking the push-forward of the sheaves by ι, we
obtain an exact sequence

0 → ι∗(Ω
1
U ⊗ ωU) → ι∗(Ω

1
U(logDm)⊗ ωU) → ι∗(ωU |Dm).

The last homomorphism is surjective and ι∗(ωU |Dm) ≃ ωX |Dm since ι∗(ωU |Dm) is supported
on Dm ⊂ U . Hence we obtain an exact sequence

(17) 0 → ι∗(Ω
1
U ⊗ ωU) → ι∗(Ω

1
U(logDm)⊗ ωU) → ωX |Dm → 0

It induces an exact sequence

H0(X,ωX |Dm) → H1(X, ι∗(Ω
1
U ⊗ ωU)) → H1(X, ι∗(Ω

1
U (logDm)⊗ ωU)).

We have H0(X,ωX |Dm) = 0 since −KX is ample. Therefore, it is enough to show that

H1(X, ι∗(Ω
1
U(logDm)⊗ ωU)) = 0.

Put D′ := π−1
m (Dm) which satisfies that D′ ≃ Dm and π∗

mDm = mD′. By using the
isomorphism

(πm)∗
(
Ω1
Ym(logD

′)(−D′)
)
≃

m−1⊕

i=0

ι∗
(
Ω1
U(logDm)⊗OU ((i+ 1)KU)

)
,

we can see that H1(X, ι∗(Ω
1
U(logDm)⊗ ωU)) is a direct summand of

H1(Ym,Ω
1
Ym(logD

′)(−D′)).

We can show that

H1(Ym,Ω
1
Ym(logD

′)(−D′)) = 0

as follows. There is an exact sequence

0 → Ω1
Ym(logD

′)(−D′) → Ω1
Ym → Ω1

D′ → 0

and it induces an exact sequence

H0(D′,Ω1
D′) → H1(Ym,Ω

1
Ym(logD

′)(−D′)) → H1(Ym,Ω
1
Ym)

β
→ H1(D′,Ω1

D′).

We can see that H1(D′,OD′) = 0 since Dm ≃ D′ and we have an exact sequence

0 → OX(−Dm) → OX → ODm → 0.
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This and the Hodge symmetry imply H0(D′,Ω1
D′) = 0. Hence it is enough to show that β

is injective. We use the following commutative diagram

H1(Ym,Ω
1
Ym

)
β

// H1(D′,Ω1
D′)

H1(Ym,O∗
Ym)⊗ C

φ

OO

β1
��

γ
// H1(D′,O∗

D′)⊗ C

ψ

OO

β2
��

H2(Ym,C)
δ

// H2(D′,C).

We can see that δ is injective by Theorem 2.9 since Ym has only l.c.i. singularities. Note
that β1 is an isomorphism since H i(Ym,OYm) = 0 for i = 1, 2. Hence δ ◦ β1 = β2 ◦ γ is
injective. This implies that γ is injective. We can show that φ is surjective by an argument
which is similar to that in [18, (2.2)]. Note that ψ is injective since D′ is a smooth surface
and H1(D′,OD′) = 0. Hence ψ ◦ γ = β ◦ φ is injective. Therefore β is injective.

Hence we proved oξn = 0. It is enough for unobstructedness by Proposition 2.4 since X
is a projective variety and has a semi-universal deformation space. �

Remark 2.13. For a Fano 3-fold X with canonical singularities, its Kuranishi space Def(X)
is not smooth in general. For example, let X be a cone over the del Pezzo surface of degree
6. Then X has 2 different smoothings P1 × P1 × P1 and P(ΘP2) in Grothendieck’s notation,
where ΘP2 is the tangent sheaf.

3. A Q-smoothing of a Q-Fano 3-fold: the ordinary case

3.1. Stratification on the Kuranishi space of a singularity. First, we recall a strat-
ification on the Kuranishi space of an isolated singularity introduced in the proof of [21,
Theorem 2.4].

Let V be a Stein space with an isolated hypersurface singularity p ∈ V . Then we have
its semi-universal deformation space Def(V ) and the semi-universal family V → Def(V ). It
has a stratification into Zariski locally closed and smooth subsets Sk ⊂ Def(V ) for k ≥ 0
with the following properties;

• Def(V ) = ∐k≥0Sk.
• S0 is a non-empty Zariski open subset of Def(V ) and V is smooth over S0.
• Sk are of pure codimension in Def(V ) for all k > 0 and codimDef(V ) Sk < codimDef(V ) Sk+1.

• If k > l, then Sk ∩ Sl = ∅.
• V has a simultaneous resolution on each Sk, that is, there is a resolution of V×Def(V )Sk
which is smooth over Sk.

3.2. A useful homomorphism between cohomology groups. Let us explain the ho-
momorphism which we need for finding Q-smoothings. Let p ∈ U be a 3-fold Stein neigh-
borhood of a terminal singularity p of index r, that is, r is the minimal positive integer such
that rKU is Cartier. Fix a positive integer m such that r|m. Let

πU : V := Spec

m−1⊕

i=0

O(iKU) → U
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be the finite morphism defined by the isomorphism OU(rKU) ≃ OU . Note that V is a
disjoint union of several copies of the index 1 cover of U . Let G := Z/mZ be the Galois
group of πU . Set Q := π−1

U (p).
We consider the case m = r to explain the ordinariness of a terminal singularity. In

this case, V is called the index one cover of U . The germ (V,Q) is a germ of a terminal
Gorenstein singularity and it is known that (V,Q) is a cDV singularity and that (V,Q) is
a hypersurface in the germ (C4, 0). We can embed (V,Q) in (C4, 0) in such a way that the
Zr-action on (V,Q) extends to a Zr-action on (C4, 0). Moreover, we may assume that (V,Q)
is a hypersurface defined by a Zr-semi-invariant function fV . Let ζU ∈ C be the eigenvalue
of the action on fV , that is, ζU satisfies that g · fV = ζUfV , where g ∈ G is the generator.
We have the following fact by the classification of 3-fold terminal singularities by Reid and
Mori.

Fact 3.1. Let (U, p) be a germ of a 3-fold terminal singularity. Then ζU is 1 or −1.

By this fact, we introduce the following notions on terminal singularities.

Definition 3.2. Let (U, p) be a germ of 3-fold terminal singularity. We say that (U, p) is
ordinary (resp. exceptional) if ζU = 1 (resp. ζU = −1).

Now we go back to general m which is some multiple of r. Let νV : Ṽ → V be a G-
equivariant good resolution, FV := ν−1

V (Q) = Exc(νV ) its exceptional locus which has

normal crossing support and Ũ := Ṽ /G the quotient. So we have a diagram

(18) Ṽ
π̃U

//

νV
��

Ũ

µU
��

V
πU

// U.

Let F (0)
U be the Zm-invariant part of (π̃U )∗(Ω

2
Ṽ
(logFV )(−FV − ν∗VKV )). Set V ′ := V \ Q.

We have the coboundary map of the local cohomology group

τV : H
1(V ′,Ω2

V ′ ⊗ ω−1
V ′ ) → H2

FV
(Ṽ ,Ω2

Ṽ
(logFV )(−FV − ν∗VKV )).

This is same as the homomorphism used by Namikawa–Steenbrink [21] and Minagawa [14].

Lemma 3.3. ([21, Theorem 1.1], [14, Lemma 4.1]) Let V be a Stein space as above. Assume
that V is not rigid. Then τV 6= 0.

We see that the cohomology groups appearing in τV are OV,Q-modules. Moreover, τV
is an OV,Q-module homomorphism. Note that T 1

(V,Q) ≃ H1(V ′,Ω2
V ′ ⊗ ω−1

V ′ ) is generated by

one element ηV as an OV,Q-module. Actually ηV ∈ T 1
(V,Q) corresponds to a deformation

(fV + t = 0) ⊂ (C4, 0)×∆1, where t is the coordinate on ∆1. Hence we see that τV (ηV ) 6= 0.
The G-invariant part of τV is

φU : H
1(U ′,Ω2

U ′ ⊗ ω−1
U ′ ) → H2

EU
(Ũ ,F (0)

U ),

where U ′ := U \ {p} is the punctured neighborhood and EU ⊂ Ũ is the exceptional locus of
µU .

If (U, p) is ordinary, we see that ηV is contained in H1(U ′,Ω2
U ′ ⊗ω−1

U ′ ) ⊂ H1(V ′,Ω2
V ′ ⊗ω−1

V ′ )
since ηV induces a deformation (fV + t = 0)/Zr ⊂ C4/Zr×∆1 of the germ (U, p). Hence we
obtain the following.
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Lemma 3.4. Let (U, p) be a germ of an ordinary terminal singularity. Then φU 6= 0.

3.3. Proof of Theorem 1.5. We can find good first order deformations as follows.

Theorem 3.5. Let X be a Q-Fano 3-fold.
Then X has a deformation f : X → ∆1 over an unit disc such that the singularities on

Xt for t 6= 0 satisfy the following condition;
Let pt ∈ Xt be a singular point and Upt its Stein neighborhood. Then φUpt

= 0, where φUpt

is the homomorphism defined in Section 3.2.

Lemma 3.4 and Theorem 3.5 imply the following.

Corollary 3.6. Let X be a Q-Fano 3-fold with only ordinary terminal singularities. Then
X has a Q-smoothing.

Proof of Corollary 3.6. By Lemma 3.4, we can continue the process in the proof of Theorem
3.5 until we get a Q-smoothing since deformations of ordinary terminal singularities are
ordinary. �

Remark 3.7. We first explain the strategy of the proof of Theorem 3.5. Let pi ∈ Ui be a
Stein neighborhood of a singularity on X . In order to find a good deformation direction, we
study the restriction homomorphism pUi

: T 1
X → T 1

Ui
. The problem is that this is not always

surjective. Actually there is an example of a Q-Fano 3-fold X such that H2(X,ΘX) 6= 0
([19, Example 5]). So we use the commutative diagram as in (21). The diagram is similar
to that in the proof of [14, Theorem 4.2]. Minagawa used a cyclic cover of X branched only
on singular points. We use a cyclic cover of X branched along a divisor, but the framework
of the proof is almost same.

Proof of Theorem 3.5. Let p1, . . . , pl ∈ X be the non-rigid singular points of X such that
p1, . . . , pl′ for some l′ ≤ l are the points which satisfy

φUi
6= 0

for i = 1, . . . , l′, where Ui is a small Stein neighborhood of pi.
First we prepare notations to introduce the diagram (21). Let m be a sufficiently large

integer such that −mKX is very ample and |−mKX | contains a smooth member Dm such
that Dm ∩ SingX = ∅. Let

π : Y := Spec

m−1⊕

i=0

OX(iKX) → X

be the cyclic cover determined by Dm. There exists a good Zm-equivariant resolution ([1])
ν : Ỹ → Y which induces an isomorphism ν−1(Y \ π−1{p1, . . . , pl}) → Y \ π−1{p1, . . . , pl}
and a birational morphism µ : X̃ := Ỹ /Zm → X . These induce the following cartesian
diagram;

(19) Ỹ
π̃

//

ν
��

X̃

µ

��

Y
π

// X.

Let πi : Vi := π−1(Ui) → Ui and νi : Ṽi := ν−1(Vi) → Vi be morphisms induced by the
morphisms in the above diagram. Put Ũi := Ṽi/Zm. Then we get the following cartesian
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diagram;

(20) Ṽi
π̃i

//

νi

��

Ũi

µi

��

Vi
πi

// Ui.

Put F := Exc(ν), E := Exc(µ), D′ := π−1(Dm) and L′ := OY (D
′) = OY (π

∗(−KX)).
Note that F has normal crossing support since ν is good. Also put Fi := Exc(νi) and
Ei := Exc(µi). Let F (0) be the Zm-invariant part of π̃∗(Ω

2
Ỹ
(logF )(−F )⊗ ν∗L′). Let U be

the smooth part of X . Note that F (0)|U ≃ Ω2
U⊗ω

−1
U . Set F (0)

i := F (0)|Ũi
and U ′

i := Ui \{pi}.

Note that F (0)
i |U ′

i
≃ Ω2

U ′
i
⊗ ω−1

U ′
i
.

We have the following commutative diagram;

(21) H1(U,Ω2
U ⊗ ω−1

U )
⊕ψi

//

⊕pUi

��

⊕l′

i=1H
2
Ei
(X̃,F (0))

≃
��

// H2(X̃,F (0))

⊕l′

i=1H
1(U ′

i ,Ω
2
U ′
i
⊗ ω−1

U ′
i
)
⊕φi

// ⊕l′

i=1H
2
Ei
(Ũi,F

(0)
i ).

We identify H2
Ei
(X̃,F (0)) and H2

Ei
(Ũi,F

(0)
i ) by the natural homomorphism induced by re-

striction. Note that F (0)
i ≃ F (0)

Ui
, where F (0)

Ui
is the sheaf defined in Section 3.2. Hence φi is

φUi
in Section 3.2.

Next we see that pUi
in the diagram (21) is the restriction homomorphism of T 1 as follows.

Let T 1
X , T

1
Vi
, T 1

Ui
be the tangent spaces of the functors DefX ,DefVi ,DefUi

respectively. By
[28, §1 Theorem 2] or the proof of Proposition 2.6 in this paper, we can see that the first
order deformations of Vi, Ui are bijective to those of the smooth part V ′

i , U
′
i . Similarly we

can see the same correspondence for X . So we have

T 1
X ≃ H1(U,ΘU) ≃ H1(U,Ω2

U ⊗ ω−1
U ),

T 1
Vi
≃ H1(V ′

i ,ΘV ′
i
) ≃ H1(V ′

i ,Ω
2
V ′
i
⊗ ω−1

V ′
i
),

T 1
Ui

≃ H1(U ′
i ,ΘU ′

i
) ≃ H1(U ′

i ,Ω
2
U ′
i
⊗ ω−1

U ′
i
),

where ΘU ,ΘV ′
i
,ΘU ′

i
are the tangent sheaves of U, V ′

i , U
′
i respectively. Hence pUi

is regarded

as the restriction homomorphism T 1
X → T 1

Ui
.

We want to lift ηi ∈ H1(U ′
i ,Ω

2
U ′
i
⊗ ω−1

U ′
i
) ≃ T 1

Ui
which induces a non-trivial deformation

of Ui to an element of H1(U,Ω2
U ⊗ ω−1

U ) ≃ T 1
X . In order to do that, we consider φi(ηi) ∈

H2
Ei
(Ũi,F

(0)
i ) and lift it by using the diagram (21).

Since π̃ is finite, H2(X̃,F (0)) is a direct summand of

H2(Ỹ ,Ω2
Ỹ
(logF )(−F )⊗ ν∗L′)

and this is zero by the vanishing theorem by Guillen-Navarro Aznar-Puerta-Steenbrink ([22]
Theorem 7.30 (a)). Hence ⊕ψi is surjective.

By the assumption that φi 6= 0 for i = 1, . . . , l′, there exists ηi ∈ H1(U ′
i ,Ω

2
U ′
i
⊗ω−1

U ′
i
)\Kerφi.

By the surjectivity of ⊕ψi, there exists η ∈ H1(U,Ω2
U ⊗ω

−1
U ) such that ψi(η) = φi(ηi). Then
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we have

(22) pUi
(η) /∈ Ker(φi).

We want to see that pUi
(η) induces a non-trivial deformation of a singularity pi ∈ Ui. For

that purpose, we study the deformation of Vi induced by pUi
(η) and see that it does not

come from a deformation of the resolution of Vi.
Since Vi has only rational singularities, the birational morphism νi : Ṽi → Vi induces a

morphism of the functors Def Ṽi → DefVi ([34, Theorem 1.4 (c)]) and the homomorphism

H1(Ṽi,ΘṼi
) → H1(V ′

i ,ΘV ′
i
) on their tangent spaces. This homomorphism can be rewritten

as
(νi)∗ : H

1(Ṽi,Ω
2
Ṽi
⊗ ω−1

Ṽi
) → H1(V ′

i ,Ω
2
V ′
i
⊗ ω−1

V ′
i
)

and this is a homomorphism induced by an open immersion V ′
i →֒ Ṽi. Note that infinites-

imal deformations of Ui come from Zm-equivariant deformations of Vi and H1(U ′
i ,ΘU ′

i
) ≃

H1(V ′
i ,ΘV ′

i
)Zm .

Note that φi is the Zm-invariant part of the homomorphism

τi : H
1(V ′

i ,Ω
2
V ′
i
⊗ ω−1

V ′
i
) → H2

Fi
(Ṽi,Ω

2
Ṽi
(logFi)(−Fi − ν∗iKVi)).

Claim 3.8. Im(νi)∗ ⊂ Ker τi.

Proof of Claim. We can write

KṼi
= ν∗iKVi +

mi∑

j=1

ai,jFi,j ,

where Fi =
⋃mi

j=1 Fi,j is the irreducible decomposition and ai,j ≥ 1 are some integers for
j = 1, . . . , mi since Vi is terminal Gorenstein. We can define a homomorphism

αi : H
1(Ṽi,Ω

2
Ṽi
⊗ ω−1

Ṽi
) → H1(Ṽi,Ω

2
Ṽi
(logFi)(−Fi − ν∗iKVi))

as a composite of the following homomorphisms;

(23) αi : H
1(Ṽi,Ω

2
Ṽi
⊗ ω−1

Ṽi
) = H1(Ṽi,Ω

2
Ṽi
(−

mi∑

j=1

ai,jFi,j − ν∗iKVi))

→ H1(Ṽi,Ω
2
Ṽi
(logFi)(−

mi∑

j=1

ai,jFi,j − ν∗iKVi)) → H1(Ṽi,Ω
2
Ṽi
(logFi)(−Fi − ν∗iKVi))

since ai,j ≥ 1.
Note that Ker τi = Im ρi, where we put

ρi : H
1(Ṽi,Ω

2
Ṽi
(logFi)(−Fi − ν∗iKVi)) → H1(V ′

i ,Ω
2
V ′
i
⊗ ω−1

V ′
i
).

We can see that (νi)∗ factors as

(νi)∗ : H
1(Ṽi,Ω

2
Ṽi
⊗ ω−1

Ṽi
)
αi→ H1(Ṽi,Ω

2
Ṽi
(logFi)(−Fi − ν∗iKVi))

ρi→ H1(V ′
i ,Ω

2
V ′
i
⊗ ω−1

V ′
i
).

Hence Ker τi = Im ρi ⊃ Im(νi)∗. �

By Claim 3.8 and the relation (22), we get pUi
(η) 6∈ Im(νi)∗. This means that a deforma-

tion of Vi induced by pUi
(η) does not come from that of the resolution Ṽi. In the following,

we check that the deformation of Vi goes out from the minimal stratum of the stratification
on the Kuranishi space Def(Vi) introduced in Section 3.1.
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Let ri be the Gorenstein index of the singular point pi and π−1
i (pi) =: {qi1, . . . , qik(i)} ,

where k(i) := m
ri
. Let

Vi := ∐k(i)
j=1Vi,j

be the decomposition into the connected components of Vi. Fix a stratification on each
Def(Vi,j) for j = 1, . . . , k(i) as in Section 3.1. We see that pUi

(η) ∈ T 1
Ui

⊂ T 1
Vi,1

induces

a deformation gi,1 : Vi,1 → ∆1. By the property of the Kuranishi space, there exists a
holomorphic map ϕi,1 : ∆

1 → Def(Vi,1) which induces the above deformation of Vi,1. Let
Si,k be the minimal stratum of Def(Vi,1). Then the image of ϕi,1 is not contained in Si,k.
and, for general t ∈ ∆1, we have ϕi,1(t) ∈ Si,k′ for some k′ < k. Let g : X → ∆1 be a small
deformation of X over a disc induced by η ∈ H1(U,ΘU). Then g induces a deformation of
Vi,1 We can continue this process as long as φi 6= 0 and reach a deformation of X whose
general fiber has the required condition in the statement of Theorem 3.5. �

Remark 3.9. The author does not know φU is zero or not when U is a Stein neighborhood
of an exceptional terminal singularity. If we can prove φU 6= 0 in that case, it implies
Conjecture 1.5 by the above proof of Theorem 3.5.

Remark 3.10. There is an example of a weak Fano 3-fold which does not have a smoothing.
It is written in [15, Example 3.7].

4. A Q-smoothing of a Q-Fano 3-fold with a Du Val elephant

In this section, we study the simultaneous Q-smoothing problem as described in Conjec-
ture 1.8.

4.1. Deformations of a Q-Fano 3-fold and its pluri-anticanonical element. In this
section, we prove unobstructedness of deformations of a Q-Fano 3-fold with its pluri-
anticanonical element. For that purpose, we first prepare a deformation functor of a pair of
a Stein neighborhood of a terminal singularity and its Q-Cartier divisor.

Let U be a Stein neighborhood of a 3-fold terminal singularity of Gorenstein index r and
D a Q-Cartier divisor on U . We have the index one cover πU : V := Spec⊕r−1

j=0OU(jKU) → U
determined by an isomorphism OU(rKU) ≃ OU . Let G := Gal(V/U) ≃ Zr be the Galois
group of πU . This induces a G-action on the pair (V,∆), where ∆ := π−1

U (D). We can define
functors of G-equivariant deformations of (V,∆) as follows.

Definition 4.1. Let DefG(V,∆) : (ArtC) → (Sets) be a functor such that, for A ∈ (ArtC),

a set DefG(V,∆)(A) ⊂ Def(V,∆)(A) is the set of deformations (V,∆) of (V,∆) over A with a
G-action which is compatible with the G-action on (V,∆).

We can also define the functor DefGV : (ArtC) → (Sets) of G-equivariant deformations of
V similarly.

Proposition 4.2. We have isomorphisms of functors

(24) DefG(V,∆) ≃ Def(U,D), DefGV ≃ DefU .

Moreover, these functors are unobstructed and the forgetful homomorphism Def(U,D) → DefU
is a smooth morphism of functors.

Remark 4.3. The latter isomorphism DefGV ≃ DefU is given in [18, Proposition 3.1].
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Proof. For a G-equivariant deformation of (V,∆), we can construct a deformation of (U,D)
by taking its quotient by G. Conversely, given a deformation (U ,D) of (U,D). Let ι : U ′ :=
U \ {p} →֒ U be an open immersion and U ′ → SpecA a deformation of U ′ induced by U .

Let ω
[i]
U/A := ι∗ω

⊗i
U ′/A. This is flat over An by [10, Theorem 12]. Thus we can construct a

G-equivariant deformation of (V,∆) by

πU : V := SpecU ⊕r−1
i=0ω

[i]
U/A → U

and ∆ := π∗
U(D) = D ×U V, where πU is defined by an isomorphism ϕsU : ω

[r]
U/A ≃ OU for

some nowhere vanishing section sU ∈ H0(U , ω[r]
U/A). Note that πU is independent of the

choice of a section sU . We can check that these constructions are converse to each other.
Thus we obtain the required isomorphisms of functors.

Since V has only l.c.i. singularities and ∆ is its Cartier divisor, we see the latter state-
ments. Thus we finish the proof of Proposition 4.2. �

By these local descriptions, we can show the following unobstructedness of a pair of a
Q-Fano 3-fold and its pluri-anticanonical element.

Theorem 4.4. Let X be a Q-Fano 3-fold and m a positive integer. Assume that |−mKX |
contains an element D. Let Def(X,D) and DefX be the deformation functors of the pair
(X,D) and X respectively.

Then the forgetful map Def(X,D) → DefX is a smooth morphism of functors. In particular,
the deformations of the pair (X,D) are unobstructed.

Proof. Set k := C. Let A be an Artin local k-algebra, e = (0 → k → Ã → A → 0) a small
extension and ζ := (f : (X ,D) → SpecA) a flat deformation of the pair (X,D). Assume that

we have a lifting X̃ → Spec Ã of f : X → SpecA. It is enough to show that there exists a
lifting D̃ ⊂ X̃ of D ⊂ X . Let ID ⊂ OX be the ideal sheaf of D ⊂ X and ND/X := (ID/I2

D)
∨

be the normal sheaf of D ⊂ X . By Proposition 4.2, there exists a local lifting of D over Ã.
Thus the condition in [9, Theorem 6.2(b)] is satisfied and we see that an obstruction to the
existence of a global lifting D̃ lies in H1(D,ND/X). Hence it is enough to show that

H1(D,ND/X) = 0.

Let U be the smooth locus of X , DU := D ∩ U and NDU/U the normal sheaf of DU ⊂ U .
There is an exact sequence

0 → OU → OU (DU) → NDU/U → 0.

By taking the push forward by the open immersion ι, we obtain an exact sequence

0 → OX → OX(D) → ND/X → 0

since the sheaves OX(D) and ND/X are reflexive and we have R1ι∗OU = 0 by depthpX = 3
for all p ∈ X \ U . This exact sequence induces an exact sequence

H1(X,OX(D)) → H1(D,ND/X) → H2(X,OX).

The L.H.S and R.H.S. are zero by the Kodaira vanishing theorem. Hence we haveH1(D,ND/X) =
0. �
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4.2. Existence of an essential resolution of a pair. We need a suitable resolution of a
3-fold cDV singularity and its divisor with only Du Val singularities as follows.

Proposition 4.5. Let Y be a 3-fold with only hypersurface singularities and D a Cartier
divisor on Y with only Du Val singularities. Assume that a finite group G acts on Y and
the action preserves D.

Then there exists a G-equivariant resolution of singularities f : Ỹ → Y of Y with the
following properties;

(i) The strict transform D̃ ⊂ Ỹ of D is smooth,
(ii) We have KD̃ = f ∗

DKD, where fD : D̃ → D is the morphism induced by f .

Proof. Let

fD : Dl

fDl−1
→ Dl−1 → · · · → D1

fD0→ D0 = D

be the minimal resolution of D, where fDi
: Di+1 → Di is a blow-up at a Du Val point

pi ∈ Di for i = 0, . . . , l − 1. Let

fY : Yl
fYl−1
→ Yl−1 → · · · → Y1

fY0→ Y0 = Y

be a composition of the blow-ups at the same smooth points as fD. The surface Di can be
regarded as a divisor on Yi.

Claim 4.6. The divisor Di is Cartier on Yi for i = 1, . . . , l.

Proof of Claim. First, note that, if Y is smooth at a Du Val singularity of D, we see the
claim over that point. Thus we assume that Y is singular.

Since we can check the statements locally around a Du Val singularity of D, we may
assume that Y is embedded in Z := C4 as a Cartier divisor and there exists a divisor ∆ ⊂ Z
such that D = ∆ ∩ Y . We may also assume that the defining equation of Y is of the form

(25) g(x, y, z) + uh(x, y, z, u),

and ∆ = (u = 0) ⊂ Y , where g ∈ C[x, y, z] is a defining equation of the Du Val singularity
of D and h ∈ C[x, y, z, u] is a polynomial which vanishes on p0 ∈ D0 = D since Y is singular
at p0.

Let

f∆ : ∆l

f∆l−1
→ ∆l−1 → · · · → ∆1

f∆0→ ∆0 = ∆,

fZ : Zl
fZl−1
→ Zl−1 → · · · → Z1

fZ0→ Z0 = Z

be compositions of the blow-ups at the same smooth points as fD. Note that Yi,∆i ⊂ Zi
and Di ⊂ Yi ∩∆i. Let Ei := f−1

Zi−1
(pi) ⊂ Zi be the exceptional divisor.

We can check that D1 ⊂ Y1 is a Cartier divisor as follows; It is enough to check that
D1 = ∆1 ∩ Y1. On E1 ≃ P3 with coordinates (x, y, z, u), we see that

∆1 ∩ E1 = (u = 0) ⊂ E1,

Y1 ∩ E1 = (g(2)(x, y, z) + uh(1)(x, y, z, u) = 0) ⊂ E1,

where g(2)(x, y, z) is the degree 2 part of g and h(1) is the degree 1 part of h. By this
description, we see that ∆1 ∩ E1 and Y1 ∩ E1 have no common component. Thus we see
that D1 = ∆1 ∩ Y1 and it is a Cartier divisor.
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If Y1 is smooth, we see that D2 is Cartier. If Y1 is singular, by the same argument, we
see that Y2 ∩ E2 and ∆2 ∩ E2 have no common component and D2 = Y2 ∩∆2 since we can
take local equations of Y2 ⊂ Z2 and D2 ⊂ Y2 as in (25) at a Du Val point p1 ∈ D1.

We can proceed as this and show the claim for all i.
�

We can assume that fY and fD are G-equivariant since we can take G-invariant centers
of the blow-ups for fD.

Next, we can take a G-equivariant resolution f2 : Ỹ → Yl such that f2 is isomorphism on
Yl \ Sing Yl. Note that f2 induces an isomorphism on Dl since it is a smooth Cartier divisor

on Yl and thus Yl is smooth around Dl. We see that the composition f := fY ◦ f2 : Ỹ → Y
satisfies the required condition. Thus we finish the proof of Proposition 4.5. �

4.3. Classification of 3-fold terminal singularities. Let (p ∈ U) be a germ of a 3-fold
terminal singularity. By Reid’s result [27], (U, p) is locally isomorphic to

0 ∈ (f = 0)/Zr ⊂ C4/Zr,

where Zr acts on C4 diagonally and f ∈ C[x, y, z, u] and x, y, z, u are Zr-semi-invariant
functions on C4. By the list in [27](6.4), we have a Zr-semi-invariant function h ∈ C[x, y, z, u]
such that

Dh := (f = h = 0)/Zr ⊂ (f = 0)/Zr =: Uf
has only a Du Val singularity at the origin and Dh ∈ |−KUf

|.

4.4. Some ingredients for the proof. Let X be an algebraic scheme and D its closed
subscheme. For the functor Def(X,D) : A → (Sets), let T 1

(X,D) := Def(X,D)(A1) be the tangent
space.

We use the following fact that deformations of a pair of a variety and its divisor.

Lemma 4.7. Let X be a 3-fold with only terminal singularities and D a Q-Cartier divisor
on X. Let Z ⊂ X be a 0-dimensional subset. Let ι : U := X \Z →֒ X be an open immersion.
Set DU := D ∩ U .

Then the restriction homomorphism ι∗ : T 1
(X,D) → T 1

(U,DU ) is an isomorphism.

Proof. We can construct the inverse ι∗ : T
1
(U,DU ) → T 1

(X,D) of ι
∗ as follows. ξ ∈ T 1

(U,DU ) cor-
responds to a deformation U1 → SpecA1 and an A1-flat ideal sheaf IDU1

. We see that
OX1 := ι∗OU1 is a sheaf of A1-flat algebras by a similar argument as in the proof of Propo-
sition 2.6. Moreover, we see that ID1 := ι∗IDU1

is an A1-flat ideal sheaf. Indeed there is
an exact sequence 0 → IDU

→ IDU1
→ IDU

→ 0 and, by taking its push-forward by ι, we
obtain an exact sequence

(26) 0 → ID → ID1 → ID → 0.

The surjectivity in (26) follows from R1ι∗IDU
= 0. We can show that R1ι∗IDU

= 0 similarly
as Claim 2.12 since ID can be written locally as an eigenspace of some invertible sheaf with
respect to the group action induced by the index one cover. By the sequence (26), we see
that ID1 is flat over A1. Consider the diagram

ID1 ⊗A1 (t)
u1

//

α1

��

OX1 ⊗A1 (t)

α2

��

ID1

u2
// OX1 .
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We see that α1 is injective since ID1 is flat over A1. Since u2 is also injective, we see that
u1 is injective. Since (t) ≃ C, we see that ID1 ⊗A1 C → OX1 ⊗A1 C is injective. By [29,
Corollary A.6], this implies that OD1 = Coker(u2) is flat over A1. Thus (OX1 , ID1) defines
an element ι∗(η) ∈ T 1

(X,D) and this determines ι∗. �

Let p ∈ U be a Stein neighborhood of a 3-fold terminal singularity p with the Gorenstein
index r. By the classification of 3-fold terminal singularities, there exists D ∈ |−KU | with
only Du Val singularity at p. Let m be a positive multiple of r and πU : V → U the Zm-
cyclic cover of U determined by the isomorphism OU(rKU) ≃ OU as in Section 3.2. Set
∆ := π−1

U (D). Then V has terminal Gorenstein singularities at Q := π−1(p) and ∆ has Du

Val singularities at Q. Let ν : Ṽ → V be the Zm-equivariant resolution of singularities of
(V,∆) constructed in Proposition 4.5. Let ∆̃ := ν−1

∗ (∆) ⊂ Ṽ be the strict transform of ∆
and F the exceptional divisor of ν. Then we have the coboundary map

(27) τ(V,∆) : H
1(V ′,Ω2

V ′(log∆′)) → H2
F (Ṽ ,Ω

2
Ṽ
(log ∆̃)),

where V ′ := V \Q and ∆′ := V ′ ∩∆. By Lemma 4.7, we see that

T 1
(V,∆) ≃ T 1

(V ′,∆′) ≃ H1(V ′,ΘV ′(− log∆′)) ≃ H1(V ′,Ω2
V ′(log∆′)(−KV ′ −∆′)).

By fixing a Zm-equivariant isomorphism OV ≃ OV (−KV −∆), we finally obtain an isomor-
phism

T 1
(V,∆) ≃ H1(V ′,Ω2

V ′(log∆′)).

This isomorphism is Zm-equivariant and the Zm-invariant parts are

T 1
(U,D) ≃ H1(U ′,Ω2

U ′(logD′)).

For deformations of ∆, we have the following.

Lemma 4.8. Let ι∆ : ∆′ →֒ ∆ be the open immersion. Then the restriction homomorphism
ι∗∆ : T 1

∆ → T 1
∆′ is injective.

Proof. For ∆1 ∈ Def∆(A1), we have (ι∆)∗ι
∗
∆O∆1 ≃ O∆1 since ∆ is S2. �

We have the following commutative diagram;

T 1
(V,∆)

//

p∆

��

T 1
(V ′,∆′)

//

p∆′

��

H1(V ′,Ω2
V ′(log∆′))

P∆′

��

T 1
∆

// T 1
∆′

// H1(∆′,Ω1
∆′),

where P∆′ is induced by the residue homomorphism. This implies that the elements of
ImP∆′ is coming from elements of T 1

∆. We also have the following diagram;

H1(∆̃,Ω1
∆̃
)

R∆
// H1(∆′,Ω1

∆′)

T 1
∆̃

≃

OO

//

(ν∆)∗
''❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖ T 1

∆′

≃

OO

T 1
∆

ι∗∆

OO
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The vertical isomorphisms are induced by the isomorphism O∆(K∆) ≃ O∆ since ν∗∆K∆ =
K∆̃. The homomorphism (ν∆)∗ is the blow-down morphism by Wahl ([34]). It is well known
that (ν∆)∗ = 0 since ∆ has a Du Val singularity (cf. [3, 2.10]). Hence we see that R∆ = 0
as well.

We have the following lemma.

Lemma 4.9. Let R∆ : H1(∆̃,Ω1
∆̃
) → H1(∆′,Ω1

∆′) be the restriction homomorphism as
above.

Then we have P∆′(Ker τ(V,∆)) ⊂ ImR∆ = 0. In particular, if η ∈ H1(V ′,Ω2
V ′(log∆′)) ≃

T 1
(V,∆) is a smoothing direction, then τ(V,∆)(η) 6= 0.

Proof. We have a diagram

H1(Ṽ ,Ω2
Ṽ
(log ∆̃))

α(V,∆)
//

��

H1(V ′,Ω1
V ′(log∆′))

��

H1(∆̃,Ω1
∆̃
)

R∆
// H1(∆′,Ω1

∆′)

The vertical homomorphisms are induced by the residue homomorphisms and the horizontal
homomorphisms are induced by open immersions. Hence the diagram is commutative. Since
Ker τ(V,∆) = Imα(V,∆), we obtain the claim by the diagram. �

We also need the following Lefschetz type statement.

Proposition 4.10. Let Y be a normal projective 3-fold with only isolated singularities and
∆ ⊂ Y its ample Cartier divisor with only isolated singularities. Assume that H1(Y,OY ) =

0. Let ν : Ỹ → Y be a resolution of singularities of the pair (Y,∆) which is isomorphism on
Y \(Sing Y ∪Sing∆) such that the strict transform ∆̃ of ∆ is smooth. Let r∆̃ : Pic Ỹ → Pic ∆̃
be the restriction homomorphism.

Then Ker r∆̃ is generated by ν-exceptional divisors.

Proof. It is enough to show that

r∆ : Cl Y → Cl∆

is injective. Indeed we have a commutative diagram

Cl Ỹ
r∆̃

//

ν∗
��

Cl ∆̃

(ν∆)∗
��

Cl Y
r∆

// Cl∆

and, if r∆ is injective, can see that

Ker r∆̃ ⊂ Ker(ν∆)∗ ◦ r∆̃ = Ker r∆ ◦ ν∗ = Ker ν∗

and Ker ν∗ is generated by ν-exceptional divisors.
Let m be a sufficiently large integer such that m∆ is very ample. By [24, Theorem 1],

there exists a very general smooth element ∆m ∈ |m∆| which is disjoint with Sing∆ and

r∆m : Cl Y → Cl∆m
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is an isomorphism. Take A ∈ Ker r∆. Then we have A · ∆ = 0 as a rational equivalence
class of a cycle on Y . Then we have

A ·∆m = 0

as a rational equivalence class on Y .
We show that A|∆m = 0 ∈ Cl∆m as follows. It is enough to show that A|∆m is numerically

trivial on ∆m since H1(∆m,O∆m) = 0. Let Γ ∈ Cl∆m be any element. Since r∆m is an
isomorphism, there exists F ∈ Cl Y such that F |∆m = Γ. We have

A|∆m · Γ = (A ·∆m) · F = 0

by the intersection theory. Indeed A · ∆m is a sum of several curves which are regularly
immersed since ∆m ∩ Sing Y = ∅. Hence A|∆m = 0 ∈ Cl∆m and we get A = 0 ∈ Cl Y since

Cl Y
≃
→ Cl∆m. Thus we get r∆ is injective and we finish the proof. �

4.5. Proof of Theorem 1.9. Our strategy of the proof of Theorem 1.9 is similar to that
of [21, Theorem 1.3]. In [21, Theorem 1.3], there are two crucial ingredients. One is the
non-vanishing of the coboundary map of local cohomology group ([21, Theorem 1.1]). And
another is the vanishing of a composition of homomorphisms between some cohomology
groups ([21, Proposition 1.2]). We modify these propositions to our setting of a pair of a
variety and its divisor.

Proof of Theorem 1.9. By Corollary 3.6, we can assume that the singularities on X are non
ordinary terminal singularities. Since the forgetful morphism Def(X,D) → DefX is smooth
by Theorem 4.4, we see that D ∈ |−KX | extends sideways in a deformation of X . We
prepare the notations to introduce the diagram (30).

Let m be a positive integer such that −mKX is very ample and |−mKX | contains a
smooth element Dm which satisfies Dm ∩ SingD = ∅ and intersects transversely with D.
Let π : Y := Spec⊕m−1

i=0 OX(iKX) → X be the cyclic cover determined by Dm. Note that
Y is terminal Gorenstein. Put {p1, . . . , pl} := SingD. Note that SingX ⊂ SingD since all
the singularities on X are non-Gorenstein. Also note that G := Gal(Y/X) ≃ Zm acts on Y
and ∆ := π−1(D) is G-invariant.

Let Ui be a sufficiently small Stein neighborhood of pi such that Ui \ {pi} is smooth and
KVi = 0, where Vi := π−1(Ui). Let πi : Vi → Ui be the morphism induced by π.

By Proposition 4.2, we can take a Zm-equivariant resolution ν : Ỹ → Y of Y such that
ν|ν−1(Y \Sing∆) is an isomorphism, ∆̃ := (ν−1)∗∆ is smooth and

ν∗∆K∆ = K∆̃,

where ν∆ : ∆̃ → ∆ is induced by ν. Then we have the following diagram;

(28) Ỹ
π̃

//

ν
��

X̃

µ

��

Y
π

// X.
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We also have the following diagram induced by the above diagram;

(29) Ṽi
π̃i

//

νi

��

Ũi

µi

��

Vi
πi

// Ui.

Put F := Exc(ν) ⊂ Ỹ , Fi := Exc(νi), E := Exc(µ) and Ei := Exc(µi). Put ∆̃i := (ν−1
i )∗∆i,

where ∆i := ∆ ∩ Vi.
Let F (0) be the Zm-invariant part of π̃∗Ω

2
Ỹ
(log ∆̃) and set F (0)

i := F (0)|Ũi
. Set U :=

X \ SingD. Note that F (0)|U ≃ Ω2
U(logDU), where DU := D ∩ U .

Hence we have the following diagram;

(30) H1(U,Ω2
U(logDU))

⊕ψi
//

⊕pUi

��

⊕l
i=1H

2
Ei
(X̃,F (0))

≃
��

⊕βi
// H2(X̃,F (0))

⊕l
i=1H

1(U ′
i ,Ω

2
U ′
i
(logD′

i))
⊕φi

//
⊕l

i=1H
2
Ei
(Ũi,F

(0)
i ),

where U ′
i := Ui \ {pi} and D′

i := D ∩ U ′
i .

We have restriction homomorphisms ι∗ : T 1
(X,D) → T 1

(U,DU ) and ι∗i : T
1
(Ui,Di)

→ T 1
(U ′

i ,D
′
i)
,

where ι : U →֒ X and ιi : U
′
i →֒ Ui are open immersions. By Lemma 4.7 and the arguments

around it, we see that

H1(U,Ω2
U(logDU)) ≃ T 1

(X,D),

H1(U ′
i ,Ω

2
U ′
i
(logD′

i)) ≃ T 1
(Ui,Di)

.

By using the diagram (30), we want to lift ηi ∈ H1(U ′
i ,Ω

2
U ′
i
(logD′

i)) ≃ T 1
(Ui,Di)

which induces

a simultaneous Q-smoothing of (Ui, Di) to X . For that purpose, we consider φi(ηi) and lift
it to H1(U,Ω2

U(logDU)).
Note that φi is the Zm-invariant part of the coboundary map τi : H

1(V ′
i ,Ω

2
V ′
i
(log∆′

i)) →

H2
Fi
(Ṽi,Ω

2
Ṽi
(log ∆̃i)). We see that τi is same as τ(Vi,∆i) introduced in (27). Thus we can use

the results in Section 4.4. By Lemma 4.9, we see that

(31) P∆′
i
(Ker τi) ⊂ ImR∆i

= 0,

where P∆′
i
: H1(V ′

i ,Ω
2
V ′
i
(log∆′

i)) → H1(∆′
i,Ω

1
∆′

i
) and R∆i

: H1(∆̃i,Ω
1
∆̃i
) → H1(∆′

i,Ω
1
∆′

i
) are

defined as in Section 4.4.
There exists ηi ∈ T 1

(Ui,Di)
which induces a simultaneous Q-smoothing of (Ui, Di) by the

description in Section 4.3. Note that φi(ηi) 6= 0 by the relation (31). To lift φi(ηi) to
H1(U,Ω2

U(logDU)), we need the following claim.

Claim 4.11. βi ◦ φi = 0.

Proof of Claim. βi ◦ φi is the Zm-invariant part of a composition of the homomorphisms

(32) H1(V ′
i ,Ω

2
V ′
i
(log∆′

i)) → H2
Fi
(Ṽi,Ω

2
Ṽi
(log ∆̃i))

≃ H2
Fi
(Ỹ ,Ω2

Ỹ
(log ∆̃)) → H2(Ỹ ,Ω2

Ỹ
(log ∆̃)).



26 TARO SANO

By considering its dual, it is enough to show that the Zm-invariant part of the homomor-
phism

Φi : H
1(Ỹ ,Ω1

Ỹ
(log ∆̃)(−∆̃)) → H1(V ′

i ,Ω
1
V ′
i
(log∆′

i)(−∆′
i))

is zero. We show that Φi = 0 in the following.
For a Z-module M , we set MC :=M ⊗ C. Let K(Ỹ ,∆̃) be a sheaf of groups defined by an

exact sequence
1 → K(Ỹ ,∆̃) → O∗

Ỹ
→ O∗

∆̃
→ 1.

We have a commutative diagram with two horizontal exact sequences

0 // H1(Ỹ ,Ω1
Ỹ
(log ∆̃)(−∆̃)) // H1(Ỹ ,Ω1

Ỹ
) // H1(∆̃,Ω1

∆̃
)

0 // H1(Ỹ ,K(Ỹ ,∆̃))C
//

ǫ

OO

H1(Ỹ ,O∗
Ỹ
)C //

δỸ

OO

H1(∆̃,O∗
∆̃
)C,

δ∆̃

OO

where the injectivity follows since we see that H0(∆̃,Ω1
∆̃
) = 0 and that H0(Ỹ ,O∗

Ỹ
) →

H0(∆̃,O∗
∆̃
) is surjective. We see that δỸ is an isomorphism and δ∆̃ is injective since we have

H i(Ỹ ,OỸ ) = 0 for i = 1, 2 and H1(∆̃,O∆̃) = 0. Hence we see that ǫ is an isomorphism.
Set K(V ′

i ,∆
′
i)
:= K(Ỹ ,∆̃)|V ′

i
. We have a commutative diagram

H1(Ỹ ,Ω1
Ỹ
(log ∆̃)(−∆̃))

��

H1(Ỹ ,K(Ỹ ,∆̃))C≃
oo

Φ′
i

��

H1(V ′
i ,Ω

1
V ′
i
(log∆′

i)(−∆′
i)) H1(V ′

i ,K(V ′
i ,∆

′
i)
)C.oo

Hence it is enough to show that Φ′
i = 0. Moreover we have a commutative diagram

H1(Ỹ ,K(Ỹ ,∆̃))C

��

� � // H1(Ỹ ,O∗
Ỹ
)C

Φ′′
i

��

H1(V ′
i ,K(V ′

i ,∆
′
i)
)C

� � // H1(V ′
i ,O

∗
V ′
i
)C.

Since ν is an isomorphism outside Sing∆, we see that Φ′′
i = 0 by Proposition 4.10. Hence

we see that Φ′
i = 0 and we finish the proof of Claim 4.11. �

By Claim 4.11, we have βi(φi(ηi)) = 0. Thus there exists η ∈ H1(U,Ω2
U(logD

′)) such that
ψi(η) = φi(ηi) for each i. Then P∆′

i
(pUi

(η)− ηi) ∈ P∆′
i
(Ker τi) ⊂ ImR∆i

= 0 by the relation
(31). Hence we have

(33) P∆′
i
(pUi

(η)) = P∆′
i
(ηi) ∈ H1(∆′

i,Ω
1
∆′

i
).

Note that this element corresponds to an element of T 1
∆i

which induces a smoothing of ∆i

by the definition of ηi.
By Theorem 4.4, there exists a deformation f : (X ,D) → ∆1 of (X,D) induced by η. By

the relation (33), we see that f induces a smoothing of ∆i. Note that Sing Vi ⊂ Sing∆i

and this relation is preserved by deformation since Dt ∈ |−KXt | contains all non-Gorenstein
points of Xt, where Xt := f−1(t) for t ∈ ∆1. We see that a deformation of Vi becomes
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smooth along a deformation of ∆i which is smooth since a deformation of ∆i ⊂ Vi is still a
Cartier divisor. Thus f is a Q-smoothing and we finish the proof of Theorem 1.9. �

Example 4.12. We give an example of a Q-Fano 3-foldX such that |−KX | does not contain
a Du Val elephant ([2, 4.8.3]).

Let S14 ⊂ P(2, 2, 3, 7) be the surface defined by a polynomial w2 = y31y
4
2 − y1z

4. Then
S14 has an elliptic singularity at [0 : 1 : 0 : 0]. Let X14 ⊂ P(1, 2, 2, 3, 7) be suitable
extension of S14 by adding several terms including x. Then we see that X14 is terminal
and |−KX | = {S14} with non Du-Val singularity. This (X,D) admits a simultaneous Q-
smoothing since X is a quasismooth well-formed weighted hypersurface.

4.6. Genus bound for primary Q-Fano 3-folds.

Definition 4.13. Let X be a Q-Fano 3-fold. Let C̃lX be the quotient of the divisor class
group ClX by its torsion part. X is called primary if

C̃lX ≃ Z · [−KX ].

Takagi [32] proved the following theorem on the genus bound of certain primary Q-Fano
3-folds.

Theorem 4.14. ([32, Theorem 1.5]) Let X be a primary Q-Fano 3-fold with only terminal
quotient singularities. Assume that X is non-Gorenstein and |−KX | contains an element
with only Du Val singularities.

Then h0(X,−KX) ≤ 10.

By combining his result and our results, we get the following genus bound.

Theorem 4.15. Let X be a primary Q-Fano 3-fold. Assume that X is non-Gorenstein and
|−KX | contains an element with only Du Val singularities.

Then h0(X,−KX) ≤ 10.

Proof. By Theorem 1.9, there is a deformation X → ∆1 of X such that Xt has only quotient
singularities and |−KXt | contains an element with only Du Val singularities for t 6= 0. By
Theorem 5.28 of [12], we have h0(X,−KX) = h0(Xt,−KXt). By Theorem 4.14, we have

h0(X,−KX) = h0(Xt,−KXt) ≤ 10.

�
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